A Facile and Low-Cost Route to Heteroatom Doped Porous Carbon Derived from Broussonetia Papyrifera Bark with Excellent Supercapacitance and CO2 Capture Performance
نویسندگان
چکیده
In this work, we present a facile and low-cost approach to synthesize heteroatom doped porous carbon via hydrothermal treatment of stem bark of broussonetia papyrifera (BP) as the biomass precursor in diluted sulfuric acid, and following thermal activation by KOH at 800 °C. The morphology, structure and textural property of the prepared porous carbon (PC) are investigated by scanning electron microscopy, transmission electron microscopy, N2 sorption isotherms, and X-ray photoelectron spectroscopy. The porous carbon possesses a high BET surface area of 1759 m(2) g(-1) and an average pore size of 3.11 nm as well as hetero-oxygen (9.09%) and nitrogen (1.7%) doping. Such porous carbon shows outstanding capacitive performances of 416 F g(-1) and 300 F g(-1) in three and two-electrode systems, respectively. As a solid-state adsorbent, the obtained porous carbon has an excellent CO2 adsorption capacity at ambient pressures of up to 6.71 and 4.45 mmol g(-1) at 0 and 25 °C, respectively. The results present one novel precursor-synthesis route for facile large-scale production of high performance porous carbon for a variety of great applications including energy storage and CO2 capture.
منابع مشابه
A Review of Aerogel Applications in Adsorption and Catalysis
Aerogels are a special class of porous material, which have excellent physicochemical properties such as low density, high porosity, high surface area and adjustable surface chemistry. Aerogels were first prepared several decades ago, but never truly commercialized due to their high cost. Technological advancements in the production and quality of different types of aerogel cut costs down and m...
متن کاملA Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction
The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) der...
متن کاملNitrogen-doped porous carbon materials generated via conjugated microporous polymer precursors for CO2 capture and energy storage
Heteroatom doping and well-tuned porosity are regarded as two important factors of porous carbon materials (PCMs) for various applications. However, it is still difficult to tune a single variable while retaining the other factors unchanged, which restricts rational and systematic research on PCMs. In this work, in situ nitrogen-doped porous carbon material (NPCM-1) and its non-doped analogue P...
متن کاملNitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
Heteroatom-doped porous carbon has attracted considerable research interest due to its effective catalytic activity towards the oxygen reduction reaction (ORR). In this study, nitrogen-doped porous activated carbon (PAC) is fabricated via a facile heat-treatment and chemical activation of cocoon silk in an inert gas atmosphere. The prepared PAC exhibits excellent ORR catalytic performances with...
متن کاملHigh-performance CO2 sorbents from algae
Highly porous N-doped carbon materials with apparent surface areas in the 1300 2400 m g range and pore volumes up to 1.2 cm g have been synthesized from hydrothermal carbons obtained from mixtures of algae and glucose. The porosity of these materials is made up of uniform micropores, most of them having sizes < 1 nm. Moreover, they have N contents in the 1.1 4.7 wt% range, this heteroatom being...
متن کامل